python3之concurrent.futures一个多线程多进程的直接对接模块,python3.2有线程池了
Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码。从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池提供了直接的支持。 concurrent.futures基础模块是executor和future。 Executor Executor是一个抽象类,它不能被直接使用。它为具体的异步执行定义了一些基本的方法。 ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。 class Executor(object): """This is an abstract base class for concrete asynchronous executors.""" def submit(self, fn, *args, **kwargs): raise NotImplementedError() def map(self, fn, *iterables, timeout=None): if timeout is not None: end_time = timeout + time.time() fs = [self.submit(fn, *args) for args in zip(*iterables)] def result_iterator(): try: for future in fs: if timeout is None: yield future.result() else: yield future.result(end_time - time.time()) finally: for future in fs: future.cancel() return result_iterator() def shutdown(self, wait=True): pass def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown(wait=True) return False submit()方法 Executor中定义了submit()方法,这个方法的作用是提交一个可执行的回调task,并返回一个future实例。future对象代表的就是给定的调用。 通过下面的例子来理解submit对线程池/进程池的操作。 # coding: utf-8 from concurrent.futures import ThreadPoolExecutor import time def return_future(msg): time.sleep(3) return msg # 创建一个线程池 pool = ThreadPoolExecutor(max_workers=2) # 往线程池加入2个task f1 = pool.submit(return_future, 'hello') f2 = pool.submit(return_future, 'world') print(f1.done()) time.sleep(3) print(f2.done()) print(f1.result()) print(f2.result()) 改写为进程池形式很简单,把ThreadPoolExecutor替换为ProcessPoolExecutor即可。如果需要提交多个task,可以通过循环多次submit()。 map()方法 除了submit,Exectuor还为我们提供了map方法,这个方法返回一个map(func, *iterables)迭代器,迭代器中的回调执行返回的结果有序的。可以通过下面的例子来理解: # coding: utf-8 from concurrent.futures import ThreadPoolExecutor as Pool import requests URLS = ['http://www.baidu.com', 'http://qq.com', 'http://sina.com'] def task(url, timeout=10): return requests.get(url, timeout=timeout) pool = Pool(max_workers=3) results = pool.map(task, URLS) for ret in results: print('%s, %s' % (ret.url, len(ret.content))) 执行结果 http://www.baidu.com/, 2381 http://www.qq.com/, 252160 http://www.sina.com.cn/, 607265 Future Future可以理解为一个在未来完成的操作,这是异步编程的基础。通常情况下,我们执行io操作,访问url时(如下)在等待结果返回之前会产生阻塞,cpu不能做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。 import requests data = requests.get('http://www.baidu.com').content print len(data) Future实例是由Executor.submit()创建的。Future提供了丰富的方法来处理调用。 # coding: utf-8 from concurrent.futures import ThreadPoolExecutor as Pool from concurrent.futures import as_completed import requests URLS = ['http://qq.com', 'http://sina.com', 'http://www.baidu.com', ] def task(url, timeout=10): return requests.get(url, timeout=timeout) with Pool(max_workers=3) as executor: future_tasks = [executor.submit(task, url) for url in URLS] for f in future_tasks: if f.running(): print('%s is running' % str(f)) for f in as_completed(future_tasks): try: ret = f.done() if ret: f_ret = f.result() print('%s, done, result: %s, %s' % (str(f), f_ret.url, len(f_ret.content))) except Exception as e: f.cancel() print(str(e)) 结果 <Future at 0x7fc2716e1f60 state=running> is running <Future at 0x7fc27136d4e0 state=running> is running <Future at 0x7fc27136d710 state=running> is running <Future at 0x7fc27136d710 state=finished returned Response>, done, result: http://www.baidu.com/, 2381 <Future at 0x7fc2716e1f60 state=finished returned Response>, done, result: http://www.qq.com/, 252343 <Future at 0x7fc27136d4e0 state=finished returned Response>, done, result: http://www.sina.com.cn/, 602366 从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的。这也表明,并发访问不通的url时,没有阻塞。 wait wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默认设置为ALL_COMPLETED。 # coding: utf-8 from concurrent.futures import ThreadPoolExecutor as Pool from concurrent.futures import wait import requests URLS = ['http://qq.com', 'http://sina.com', 'http://www.baidu.com', ] def task(url, timeout=10): return requests.get(url, timeout=timeout) with Pool(max_workers=3) as executor: future_tasks = [executor.submit(task, url) for url in URLS] for f in future_tasks: if f.running(): print('%s is running' % str(f)) results = wait(future_tasks) done = results[0] for x in done: print(x) wait有timeout和return_when两个参数可以设置。 timeout控制wait()方法返回前等待的时间。 return_when决定方法什么时间点返回:如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成;如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。